
  
Abstract—The goal of this paper is to detect and to justify the 

basic parameters and operational conditions in hydrodynamic seals 
with thin layer fluid flow when three–dimensionality of space, 
influence of inertia and viscous forces in consistent cannot be 
neglected. The mathematical model of three-dimensional enforced 
and shear fluid flow in an eccentric channel between a stationary 
outer cone and a rotating inner cylinder is based on the Navier-Stokes 
equation and the continuity equation. Such flows occur in the 
hydrodynamic seals and fluid–film bearings. On the basis of 
similarity theory and dimensional analysis the significance of the 
terms in the Navier–Stokes equation and the continuity equation were 
considered with the values of similarity criteria, such as Reynolds 
number, Euler number and others and geometry parameters, such as 
the eccentricity and conicity parameters. The numerical solution and 
simulation program are based on the finite-volume method with the 
calculation schemes, represented in this paper. The results represent 
velocity and pressure fields together with some integral 
characteristics e.g. leakage as a function of conicity and eccentricity. 
The results of numerical solutions were compared with results of 
widely known analytical solutions and with the results calculated by 
other numerical methods. 
 

Keywords—Cone-cylinder gap, finite volume, incompressible 
fluid, Navier-Stokes equation. 

I. INTRODUCTION 
ATHEMATICAL modeling of enforced and shear flows of 
viscous fluids in gaps of various geometry is a topical 

question in hydrodynamics. Among examples of such flows 
are flows in noncontact hydrodynamic seals and fluid-film 
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bearings which are widely used in mechanical engineering, 
metallurgical and rocket industry. It is widely known that there 
are many life-time and reliability requirements for seals and 
bearings [1], [2]. 

Mathematical and simulation models of the three–
dimensional enforced and shear flow of viscous 
incompressible fluid in the gap between the steady state cone 
and the rotating eccentric cylinder are studied in this article. 
The main equations in this mathematical model are the Navier-
Stokes equation and the continuity equation [3]. The three-
dimensional flow in the channel under study, the thickness of 
which is variable in all directions, does not allow to use 
traditional approaches to form a problem of the thin layers of 
fluid flow in the fluid-film bearings and the hydrodynamic 
seals. For example, as it will be shown below, it is impossible 
to omit inertia terms and some dissipative terms of the Navier-
 Stokes, i.e. it is impossible to use the Reynolds equation [3] or 
variation approach described in [4], [17]. In this case, the 
present research focuses on the numerical solution of the 
Navier-Stokes equation system considering all the inertia and 
dissipative terms. 

II. MODELING 

A. Mathematical model 
The flow of the viscous incompressible Newtonian fluid in 

the confusor is under investigation. The flow region is formed 
by the stationary truncated cone (stator) and the rotating 
cylinder (rotor), which are shown in Fig. 1. The Cone has radii 

1R  and 2R respectively. The Cylinder with radius r is off-
centered in cone and is rotating at a constant angular 
velocityω . Under pressure 1P  the fluid flows from one end 
towards the channel shrinkage and escapes from the other end 
under pressure 0P . 
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Fig. 1 geometry of the channel 

 
The fluid is assumed to fill up the whole channel, the flow is 

laminar. The temperature is assumed as constant. 
The Navier-Stokes equation and the continuity equation are 

the fundamental equations which describe the flow process [3], 
[5] and in tensor form look like: 
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where 0ρ  is a density of fluid, V



 is a velocity vector, P∇  is a 

gradient of the pressure, σD  is a stress deviator, V


⋅∇  is a 
velocity divergence, ⊗  is a tensor product. 

The stress deviator is determined by the Newton's 
generalized hypothesis: 
 

ξσ µDD 2= , (2) 

 
where µ  is a coefficient of the dynamic viscosity, ξD  is a 

strain-rate deviator. 
For the incompressible medium: 
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Due to the nondimensionalization by means of characteristic 

quantities, system (1) in cylindrical coordinates can be 
rearranged as follows: 
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*V  is a characteristic velocity, rRh jj −=0  is a radial 
clearance, e  is a eccentricity. 

The equations of the channel boundaries may be shown as 
follows: 
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System (4) can be solved with boundary conditions 
simultaneously. The boundary conditions for the velocity 
components can be presented as follows: 
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For pressure function P̂  on the ends of canal: 
 

1)0,,ˆ(ˆ =ϕρP , 0)1,,ˆ(ˆ =ϕρP . (6) 
 

Because the fluid flow canal is closed form the tangential 
coordinate direction the periodical conditions can be described 
as follows: 
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B. Analyses of model 
As was said before, the flows in noncontact seals and fluid-

film bearings are investigated, so the flow thickness is very 
small. The set of main parameters and theirs order of 
magnitudes are presented in Table I. 

 
I The main parameters order of magnitudes 

Parameter Lower level Upper level 

r , m 10-2 10-1 

01h , m 10-5 10-4 

β  0 10-1 

L , m 10-2 10-1 

n , rpm 101 105 

PΔ , Pa 105 107 

μ , Pa·s 10-5 100 

0ρ , kg/m3 100 103 

 
Using order-of-magnitude analysis it is easy to determining 

which terms in the equations are very small relative to the 
other terms [1], [3], [6], [7]. The values of the terms of 
equations (4) are presented in Table II, the geometry 

parameter δ  coefficient domain is 410−  to 110− . In order to 
δ  coefficient two cases available, firstly, if the conicity 
parameter β  has the same magnitude with the relative gap η, 
and secondly, if the conicity parameter β  exceeds the relative 
gap η  by one or more orders of magnitude. Also the Euler 
number Eu  and the Reynolds number Re  orders of 
magnitude are considered in follow conclusions: 

- if the conicity parameter β  is less than 310− and the 

Reynolds number is less than 010 , then the velocity radial 
component, the inertial term and the velocity components 
derivatives in the tangential and axes directions are negligible; 

- if the Reynolds number is more than 010 , then the inertial 
terms and the viscosity terms has the same magnitude, and if 

the conicity parameter β  is more or equal to 310− , all the 
velocity components has significant values. 
 
II Equation (4) terms order of magnitudes 

The Navier-Stokes equation 
Inertial terms 
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The continuity equation 

1 δ  1 1 

 
According to the order-of-magnitude analysis, widely used 

assumptions of hydrodynamic theory of lubrication [3], [6] are 

acceptable if the conicity parameter β  is less than 310− , and 
that is the flow between two cylinders actually. In this study it 
is necessary to consider the Navier-Stokes equation in its 
complete form. 

Thus, the mathematical model of the researched process has 
a look (4)-(7) and consists of four nonlinear partial differential 
equations with four unknown functions. 

III. NUMERICAL CALCULATIONS 
Numerical calculations of equations (4)-(7) are based on the 

finite (or control) volume method (F.V.M.). By means of the 
F.V.M. it is possible to get an adequate solution even for a 
crude mesh, because of guaranteed fulfilling of the 
fundamental laws of conservation [8], [9]. 

Equations (4) in tensor form look as follows: 
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where ∇̂  – a non-dimensional Hamiltonian operator. 

According to the flow region geometry the element size by 
ρO  direction is variable and depends on the ϕO  coordinate. 

The element sizes measured with the ϕO  and Oz  coordinates 
are constant. See Fig. 2 as the discretization principle 
visualization in case of the coaxial flow region. 
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a 

 
b 

Fig. 2 Flow region discretization: (a) -radial and axial 
section and (b) – 3-d FV for Navier-Stokes equations 

(axis ρO ) 
 

According to approach [8] - [15] the following operation is 
the volume integration of equations (8) in each finite volume: 

zdddd ˆˆˆˆ ϕρρΩ = , shown in the Fig. 2 in a curvilinear 
coordinate system. 

Using the Ostrogradskii formula it is possible to decrease 
the digit of the derivatives of the velocity vector: 
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 is a unit normal vector on the respectively surface of 
FV. 

When we calculate surface integrals on each FV surface 
(Fig. 2) and use the mean-value theorem, velocity components 
in the Navier-Stokes equations can be approximated by the 
exponential functions, e.g. ρV̂  component of the first equation 

in each FV ]ˆ;ˆ[ eee ρρ  looks as follows: 
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After that system (9) turns to: 
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System (10) is a discrete analogue of (8), and some of its 

coefficients include unknown functions discrete solution. 
Due to the Navier-Stokes equation consisting non-linear 

terms, the solution search procedure is iterative. Using the first 
three equations of the system (10), with an approximate 
pressure distribution SP̂ an approximate velocity distribution 

SV̂
  is calculated, i.e. the equation system is solved of the 

following form: 
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where )ˆ(V ijaA =  are coefficients before increments of 

velocity components in the Navier-Stokes equation in all nodes 
of discrete flow region, SP̂  - approximate pressure 
distribution, ΩV̂



 - the values of the velocity components on the 

border of the area. 
The solution of this equation system is implemented using 

the Gauss–Seidel method, the convergence is provided by the 
sufficient attribute [8]: 

∑≥
≠ ji

ijii aa ˆˆ  - for all equation  

and ∑>
≠ ji

ijii aa ˆˆ  - at least one equation 

The fulfillment of this condition is provided by the feature 
of the matrix VA  coefficients, for which the diagonal 

elements equal the sum of side elements with all the 
corresponding unknown components of velocity, for instance, 
for the first equation: ∑=

≠ ji
ijii aa ˆˆ . 

The fulfillment of the second condition is provided by the 
known components of velocity on the boundary of the area, i.e. 
by the boundary conditions setting, so the corresponding side 
components move to the right-hand part, thus decreasing the 
sum of the remaining ∑

≠ ji
ijâ . 

Next, the system (10) can be written for each unknown 
function, presented in a form of a sum of its value on the 
previous iteration and some increment 1ˆ +S

Fh : 1ˆˆ1ˆ ++=+ S
FhSFSF . 

The results of the zero iteration can be taken as the solution 
of some asymptotic problem. 

Then the equation system for the increments 1ˆ +S
Fh  

calculation on every iteration can be obtained by means of 
subtraction of the corresponding equations on the previous 
step S from the first three equations of the system (10) on the 

1+S  step, adding the continuity equation to close the system 
on the 1+S  step: 
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It is more convenient to write this system down in a matrix 

form: 
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where PB  are coefficients before increments of pressure in the 
Navier-Stokes equation,  VC  are coefficients before 
increments of velocity components in the continuity equation, 

)ˆ( SVf


 is a right-hand part of the discrete analogue of the 
continuity equation, which includes the values of the velocity 
components on the previous iteration. 

Matrix (11) includes zeroes block because of the continuity 
equation, so this matrix determinant approaches zero and its 
inversion is difficult to reach. As the result, the system of these 
equations may be solved as follows: express in terms of the 
vector of velocity increments in the first equation of (11) and 
set it in the second equation (11). Hereby we can, in the first 
place, find pressure increments and then - velocity components 
increment. 

The coefficients of the system of equations discrete 
analogue include exponential functions of the velocity 
components approximation (Fig.3). Further, those exponential 
functions can be approximated by means of the power 
functions as polynomials of fifth order [8]. Here the 
coefficients which are first on the list are shown as follows: 
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Fig. 3 the coefficient approximation 
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The approximation accuracy in the range under factors 
study is less than 0.1%, and such substitution significantly 
decreases the calculation time. 

IV. DISCUSSION 
Below some simulated results for the viscous 

incompressible fluid enforced and shear flow in the eccentric 
gap between the outer cone and the inner cylinder with input 
data are presented (see Table III). 

 
III The input data definition 
Pressure drop PΔ , 

Pa 
Frequency n , 

rpm Radius r , m 

3.5×105 400 0.1 

Gap 01h , m Length L , m Eccentricity e , 
m 

2×10-4 0.1 0.2 01h  

Conicity β  Density 0ρ , 
kg/m3 

Viscosity μ , 
Pa·s 

1.0×10-3 894.5 0.62 
 
The velocity distributions axial component with respect to 

length and thickness, both in the region of the maximal gap is 
presented in Fig. 4. As it can be seen in Fig. 4 the maximum 
velocity value is reached on the lip of the channel. 

 

 
 

Fig. 4 axial velocity component: (a) - over a normal and 
tangential coordinate at the inlet and (b) - over a normal and 

axial coordinate 
 

Under constrains of the axial pressure difference and the inner 
cylinder rotation, pressure in the axial direction is nonlinear with 
extremum point as shown in Fig. 5a. Also, in Fig. 5b the pressure 
appearance in the tangential direction with the maximum point 
in the thinnest gap region, which defines the bearing capacity 
of the lubricant layer. 

 

 
Fig.5 Pressure function: (a) - in the axial and (b) - tangential 

direction 
 

Considering the simulation results it is established that the 
eccentricity increase leads to the nonlinear leakage increase. 
The conicity parameters increase with a fixed gap at the inlet 
of the channel leads to the drop in leakage (Fig.6). 

Also, for the case of the enforced flow in the small nonzero 
conicity and the zero eccentricity region simulation the results 
were compared with the approximate solution of G. Nikitin 
[16], [17]. The result of this comparison is about 1% error in 1 
degree region conicity, however, the error increases as the 
apex angle of the cone increases. 

 

 
Fig. 6 Leakage as a function of conicity and eccentricity 

 
For the case of coaxial and zero conicity flow region the 

results were compared with a well-known analytical solution 
and with other results simulated by the finite element method 
(FEM) and the finite difference method (FDM). The results of 
such comparison of various methods simulation are presented 
in table IV. 

 
IV The simulation error 

Number of layers 
through thickness 25 50 75 

Max. error (FDM), %  11.3 5.44 3.56 

Max. error (FEM), %  3.67 2.42 1.51 

Max. error (FVM), %  3102 −×  4103.8 −×  4105.2 −×  
 
Obviously, the FV method has smallest percentage of error 

and adequate results even on a crude mesh. 

V. CONCLUSION 
So, the paper presents the mathematical model of a viscous 

incompressible fluid flow in a channel between a stationary 
cone and an eccentric rotating cylinder. This model is different 
from the known models of the fluid flow in the fluid-film 
bearings [3], [6], [18]-[20] in the following ways: firstly, it 
allows to consider a simultaneous action of the pressure and 
the shear flow, secondly, it takes a variable channel geometry 
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into account, and it finally allows to consider the influence of 
the inertia forces on the basic physical values fields. The 
mathematical model was initially transformed into a non-
dimensional form, which allowed to implement an analysis of 
the influence of every term of the equations. It was determined 
that for the flows in a cylinder-cone channels, where the 

conisity parameter is not higher than 310−<β  the Reynolds 
assumptions [3] are valid regarding the smallness of the 
normal velocity component and the velocities derivatives over 
the tangential and axial coordinates, and regarding the 
insignificant change in pressure over a layers thickness. For 

the cases, when conisity 310−≥β and the number 010Re > it 
is necessary to consider the inertia terms and the influence of 
the normal velocity component; it is also important to consider 
the change in pressure over the layers thickness and the 
channels length. As a result, the solutions based on the 
presented mathematical model, in light of its complexity, were 
obtained numerically. The discrete analogue of the model was 
obtained based in the method of finite volumes, effectiveness 
of which is caused by implementation of the conservation laws 
in every elementary volume, which makes it different from all 
other mesh methods. Using specific examples it was shown 
that calculation schemes based on the FVM allow to obtain 
adequate results even on a crude mesh. 
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